mal analysis. The structure of the tetragonal phase was found to be the C11a type, in agreement with the previous room-temperature results. The LaC2 pattern at 900°C gave $K = 0.24 \pm 0.01$, $B = 3.1 \pm 0.6$, $z = 0.404 \pm 0.002$, R = 0.08, where $R = \sum w |I_0 - I_0| / \sum w I_0$. Lattice parameters were $a_0 =$ 4.000, $c_0 = 6.58$, giving a C-C distance of 1.26 ± 0.03 Å. The structure of the cubic phase was found to be the KCN type, isomorphous with cubic uranium dicarbide (Bowman, Arnold, Witteman, Wallace & Nereson 1966). This structure is face-centered, space group Fm3m, with metal atoms in $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ and C₂ groups with centers at (0,0,0) randomly oriented along [111] directions. Intensities were calculated on the basis of one-fourth of a carbon atom in (x, x, x). The C_2 groups may also be described by a free rotator model. There seems to be no significant difference between the two models. The LaC₂ pattern at 1100° gave $K=0.06\pm0.01$, $B=5.6\pm$ 2.0, $x = 0.061 \pm 0.012$, R = 0.02. With $a_0 = 6.022$, $d_{C-C} = 1.27$ ± 0.06 Å. The observed C-C distances are in reasonable agreement with the room temperature value of 1.30 Å

(Atoji, 1961). The actual values may be somewhat larger, however, owing to the effect of thermal motion of the carbon atoms.

References

Атол, М. (1961). J. Chem. Phys. 35, 1950.

BACON, G. E. (1962). Neutron Diffraction, Oxford: Clarendon Press.

BOWMAN, A. L., WALLACE, T. C., YARNELL, J. L., WENZEL, R. G. & STORMS, E. K. (1965). Acta Cryst. 19, 6.

BOWMAN, A. L., ARNOLD, G. P., WITTEMAN, W. G., WAL-LACE, T. C. & NERESON, N. G. (1966). Acta Cryst. 21, 670. BOWMAN, M. G., HULL, D. E., WITTEMAN, W. G., ARNOLD, G. P. & BOWMAN, A. L. (1966). Rev. Sci. Instrum. 37, 1543.

KRIKORIAN, N. H., WALLACE, T. C. & BOWMAN, M. G. (1967). Propriétés Thermodynamiques, Physiques et Structurales des Dérivés Semi-Métalliques, p.489-94. Paris: Centre National de la Recherche Scientifique.

Acta Cryst. (1968). B24, 460

Crystal data for sodium tetragermanate By J. H. JOLLY and R. L. MYKLEBUST, College Park Metallurgy Research Center, Bureau of Mines, College Park, Maryland, U.S.A.

(Received 11 July 1967)

Single-crystal X-ray studies on sodium tetragermanate, Na₂Ge₄O₉, gave $a_0 = 11.335$ $c_0 = 9.697$, space group $P6_3/m$, Z=6. This colorless transparent compound with $\omega=1.731$ and $\varepsilon=1.773$ has a measured density of 4.41 g.cm⁻³ (27°C). Indexed powder data are listed.

Small single crystals of sodium tetragermanate ($Na_2Ge_4O_9$) were grown in slowly cooled 1:4 Na₂O-GeO₂ melts. The crystal data for the compound have not been published although Schwarz & Heinrich (1932) and Tresvyats'kii (1958) reported Na₂Ge₄O₉ in their studies of the Na₂O-GeO₂ phase system. Nowotny & Wittmann (1954) reported a Na₂Ge₄O₉ modification isotypic with K₂Ge₄O₉ and Shaw, Corwin & Edwards (1958) grew from a 1:4 Na₂CO₃-GeO₂ melt, a crystalline compound having indices of refraction very similar to those found in this study. A more recent investigation of the Na₂O-GeO₂ phase system by Murthy & Aguayo (1964) questioned the existence of sodium tetragermanate; however, chemical analysis and crystallographic data confirm Na₂Ge₄O₉ as a valid compound.

The crystals are colorless, transparent with a vitreous luster and have no apparent cleavage. The only crystal form present is the first order hexagonal prism (1010); the terminating faces are not developed or interfered with by other crystal growth. The refractive indices of the crystal, measured by immersion oils for sodium light ($\lambda = 589.2 \text{m}\mu$) at 25°C, are $\varepsilon = 1.773 \pm 0.001$ and $\omega = 1.731 \pm 0.001$.

Since the only systematic extinctions observed in Weissenberg and precession photographs were for 000l, where l is odd, the crystals are in hexagonal crystal class 6 or 6/m. A thin section (0.2 mm thick) containing crystals oriented normal to the c axis was examined under the petrographic microscope using sodium light. No optical activity was observed and, therefore, it is concluded that the crystal class is probably 6/m and the space group is $P6_3/m$.

The X-ray diffraction data of a powdered sample (Table 2) were measured on a calibrated Norelco diffractometer at $\frac{1}{4}$ ° 2θ per minute using filtered copper radiation. A leastsquares refinement program of these data on an IBM 7094 computer yielded the lattice constants with e.s.d.'s listed in Table 1.

Table 1. Crystal data for Na₂Ge₄O₉

 $a = 11.335 \pm 0.001 \text{ Å } (25 ^{\circ}\text{C})$ $c = 9.697 \pm 0.001 \text{ Å } (25 ^{\circ}\text{C})$ c/a = 0.8555 $V = 1245.9 \text{ Å}^3$ $D_m = 4.41 \pm 0.02 \text{ g.cm}^{-3} (27 \,^{\circ}\text{C})$

 $D_x = 4.435 \text{ g.cm}^{-3}$

Table 2. Diffraction data for Na₂Ge₄O₉

d(hkl)	$10^4 \sin^2 \theta_o$	$10^4 \sin^2 heta_c$	I_o
5·66 Å	185	185	65
4.89	249	248	53
4.84	254	253	44
4.34	316	314	5
3.68	439	438	20
3.45	498	495	20
3.44	501	499	6
3.26	559	556	2
3.105	615	618	1
2.943	685	684	35
2.830	740	740	6
2.802	755	754	37
	5.66 Å 4.89 4.84 4.34 3.68 3.45 3.44 3.26 3.105 2.943 2.830	5·66 Å 185 4·89 249 4·84 254 4·34 316 3·68 439 3·45 498 3·44 501 3·26 559 3·105 615 2·943 685 2·830 740	5·66 Å 185 185 4·89 249 248 4·84 254 253 4·34 316 314 3·68 439 438 3·45 498 495 3·44 501 499 3·26 559 556 3·105 615 618 2·943 685 684 2·830 740 740

Table 2 (cont.)				Table 2 (cont.)					
hkl	d(hkl)	$10^4 \sin^2 heta_o$	$10^4 \sin^2 heta_c$	I_o	hkl	d(hkl)	$10^4 \sin^2 heta_o$	$10^4 \sin^2 heta_c$	I_o
$\left. \begin{array}{c} 310 \\ 221 \end{array} \right\}$	2.716	804	802	59	600 414	1.635 1.603	2218 2309	2216 2303	15 9
302	2.705	810	808	100	315	1.577	2384	2377	19
222	2.442	994	991	31	520	1.570	2404	2401	5
213	2.432	1002	999	33	NT		1 -1 11		_
004	2.421	1011	1009	31	Numerous additional observed lines less than 1.57 Å.			7 A.	
312	2.370	1056	1053	4					
104	2.350	1074	1071	24	The de	nsity was me	asured by th	e double pvc	nometer
320	2.235	1188	1170	2	The density was measured by the double pycnometer method of Collett (1954), using carbon tetrachloride.				
114	2.225	1198	1194	5	No further structural work on this substance is contem-				
321	2.189	1238	1233	9	plated.	inci structura	WOLK OIL THIS	substance is	comem-
204	2.172	1257	1256	4	piateu.				
410	2.140	1295	1293	6			References		
223	2.128	1310	1307	13	_				
313	2.080	1371	1368	10			J. Res. NBS,		
322	2.040	1425	1422	10	Murthy,	M. K. & Agu	JAYO, J. (1964)	. J. Amer. Cer	am. Soc.
304	1.945	1568	1563	4	47 , 444.		, , ,		
323	1.846	1741	1737	5	Nowotny	, H. & WITTN	1ANN, A. (1954	Mh Chem	85 558
421 502	1.818	1794	1787 1791	9	Schwarz Chem. 2	, R. & Heinr	існ, F. (1932)	Z. Anorg. u.	Allgem.
314	1.809	1813	1810	5			50) D + 11	., , , , , , , , , , , , , , , , , , ,	
413	1.784	1864	1861	5		S'KII, S. G. (19	58). Dopovidi 1	4kad. Nauk Ul	kr. RSR,
510	1.759	1916	1908	12	3, 295.				
404	1.723	1998	1994	5			, A. A. & Ed	wards, A. A.	(1958).
215	1.716	2008	2013	26		r. Chem. Soc.		•	

Acta Cryst. (1968). B24, 461

Crystallography of zinc selenite dihydrate. By WILLIAM G.R. DE CAMARGO and DARCY P. SVISERO, Department of Mineralogy, University of São Paulo, Caixa Postal 8105, São Paulo, Brazil

(Received 27 November 1967)

ZnSeO₃. $2H_2O$ has 2/m symmetry and grows as small and well developed colorless crystals $(0\cdot 1-5 \text{ mm})$ of pseudo-rhomboedral habit. The main observed interfacial angles are: $(110) \land (102) = 63^{\circ} 50'$ and $(110) \land (1\overline{10}) = 80^{\circ} 10'$, and the observed optical constants $X = \alpha = 1\cdot 660$, $Y = \beta = 1\cdot 710$, $Z = \gamma = 1\cdot 750$; $(\gamma - \alpha) = 0\cdot 090$ and $2V_{\text{calc}} = 82^{\circ}$. The unit cell parameters determined in the precession photographs and refined by the powder method are $a_0 = 7\cdot 68$, $b_0 = 8\cdot 80$, $c_0 = 6\cdot 49$ Å, $\beta = 81^{\circ} 34'$ and $a_0:b_0:c_0 = 0\cdot 87:1:0\cdot 74$. Space group $P2_1/n$. The observed specific gravity $3\cdot 52$ g.cm⁻³ suggests 4 formulae per unit cell.

Selenites of several metals, such as Ni, Co, Mn, Cu and Zn, have been recently prepared by the Chemistry Department of the University of São Paulo, Brazil, and later investigated from the crystallographic point of view by various authors.

 $ZnSeO_3.2H_2O$ precipitates as monoclinic crystals, with 2/m symmetry, the individuals being approximately equidimensional and of size of the order of a millimetre, resembling a pseudo-rhombohedral habit. Some fibrous radiated aggregates may however be formed occasionally. Most of the crystals are colourless, although a few may exhibit a white colour.

The crystal morphology is very simple, showing only the two crystallographic forms {110} and {102}, as determined by the following interfacial angles measured in the two-circle goniometer:

$$(110) \land (102) = 63^{\circ} 50'$$

 $(110) \land (1\overline{10}) = 80^{\circ} 10'$.

The axial ratio $a_0:b_0:c_0=0.87:1:0.74$, has been calculated from the unit-cell dimensions obtained by X-ray diffraction. The compound is biaxial (-), $2V=82^{\circ}$, and has the following indices of refraction:

$$X = \alpha = 1.660 \pm 0.005$$

 $Y = \beta = 1.710 \pm 0.005$
 $Z = \gamma = 1.750 \pm 0.005$.

The unit cell has been determined by precession methods with Mo $K\alpha$, by using photographs of the reciprocal level h0l and 0kl. The parameters have been refined by the powder method with Cu $K\alpha$, for greater accuracy, giving

$$a_0 = 7.68$$
, $b_0 = 8.80$, $c_0 = 6.49$ Å,
 $\beta = 81^{\circ}34'$.

The main reflexions of the powder diagram are listed in Table 1.

Table 1. Interplanar spacings for ZnSeO3.2H2O

hkl	$d_{ m calc}$	$d_{ m obs}$	$I_{ m rel}$
110	5·744 Å	5·754 Å	10
10 T	5.314	5.322	2
11 T , 101	4.545	4.540	2
020	4.402	4.393	2
111	4.061	4.047	5
200, 120	3.795	3.795	5
210	3.485	3.480	6
21T	3.256	3.253	2